Joint Models for Incomplete Longitudinal Data and Time-to-Event Data

نویسندگان

چکیده

Clinical studies often collect longitudinal and time-to-event data for each subject. Joint modeling is a powerful methodology evaluating the association between these data. The existing models, however, have not sufficiently addressed problem of missing data, which are commonly encountered in studies. In this paper, we introduce novel joint model with shared random effects incomplete Our proposed consists three submodels: linear mixed Cox proportional hazard time-to-dropout from study. By simultaneously estimating parameters included submodels, biases estimators expected to decrease under two scenarios. We estimated by Bayesian approach, performance our method was evaluated through Monte Carlo simulation

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boosting joint models for longitudinal and time-to-event data.

Joint models for longitudinal and time-to-event data have gained a lot of attention in the last few years as they are a helpful technique clinical studies where longitudinal outcomes are recorded alongside event times. Those two processes are often linked and the two outcomes should thus be modeled jointly in order to prevent the potential bias introduced by independent modeling. Commonly, join...

متن کامل

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

Comparison of time to the event and nonlinear regression models in the analysis of germination data

Extended abstract   Introduction: Numerous studies are being carried out to reveal the effects of different treatments on the germination of seeds from various plants. The most commonly used method of analysis is the nonlinear regression which estimates germination parameters. Although the nonlinear regression has been performed based on different models, some serious problems in its structure...

متن کامل

Joint Modelling for Longitudinal and Time-to-Event Data: Application to Liver Transplantation Data

A common objective in follow-up studies is to characterize the relationship between longitudinal measurements and time-to-event outcomes. For this aim, various methods were proposed in the statistical literature, such as an extended version of the Cox model with longitudinal covariates or a two-stage approach. However, these techniques have several limitations, including the possibility of bias...

متن کامل

Joint Models of Longitudinal and Time-to-Event Data Using Gibbs Sampling

Jointly modelling related longitudinal and time-to-event data can offer advantages over separate modelling. We consider three models for longitudinal/time-to-event data: 1. random slopes and intercepts/constant hazard 2. random slopes and intercepts/step function hazard 3. random intercepts, fixed slope and IOU errors/constant hazard. Methods for simulating data from these models are outlined. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2022

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math10193656